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A perturbation theory for the determination of transport coeKcients near the critical point is presented.
This perturbation theory is based upon processes in which one transport mode decays into several low-
wave-number modes. Scaling-law concepts are used to calculate the order of magnitude of the matrix ele-
ments and frequency denominators which appear in this theory. This permits the estimation of the order of
magnitude of the transport coefBcients near the critical point. In particular, this approach indicates that the
thermal conductivity should diverge roughly as (T—T,) 2~3 on the critical isochore and coexistence curve,
while the viscosity g should be either weakly divergent or strongly cusped at the critical point. On the
other hand, the bulk viscosity g should diverge roughly as (T-T,)~ for low frequencies, and as (T—T,)~~'
for higher frequencies on the critical isochore near the critical point. Speci6c predictions are made for
these quantities in terms of critical indices, and the connection between these relations and the scaling of
frequencies is discussed.

I. INTRODUCTION

'N several recent papers, ' ' correlation function or
~ - equivalent response function techniques have been
applied to the problem of predicting and explaining
the apparent divergences in transport coefficients near
the critical point. ' The present paper is devoted to an
extension of these methods and their application to the
liquid-gas phase transition. The methods of analysis
are purely classical, so that the work is directly relevant
to classical Ruids. However, most of this work deals
with long-wavelength limits in which the quantum
corrections are quite small. For this reason, it is hoped
that the analysis here can be appropriate for either
classical or quantum Quids.

Our work is very closely related to Kawasaki's'
formulation of Fixman's' ' theoretical approach. There
are two main differences between our methods and
Kawasaki s. First, we estimate correlation functions
with the aid of the "scaling-law" idea, ' " which has
proved very successful in describing the correlations
in the two-dimensional Ising InodeP' "and moderately
successful in describing the three-dimensional Ising
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model" and real. three-dimensional phase transitions. '4

Kawasaki and Fixman estimated correlation functions
with the aid of ideas drawn from the Ornstein-Zernike"
theory of critical correlations, and their estimates are
probably less accurate than estimates drawn from the
scaling-law ideas.

The second difference between this work and
Kawasaki's is a matter of formalism. Kawasaki
evaluates correlation functions involving currents of
conserved quantities by expanding these currents in
the densities of the conserved quantities. At 6rst sight,
this expansion appears to be no better justiled than the
analogous expansion of the energy density to second
order in the order parameter"'~ which predicts an
incorrect, (T T,) '~', div—ergence in the speciac heat.
In this paper, we construct a formal perturbation
theory for transport coefficients, which turns out to be
equivalent to the expansion procedure of Kawasaki.
In this way, we produce a partial justihcation for the
basic ideas used by him and by Fixman.

The next section of this paper is devoted to the de-
velopment of formal techniques; the following section
applies these techniques to the estimation of transport
coefficients; the 6nal section lists the conclusions of
this analysis.

II. FORMULATION

A. Liouville Equation

Any nonequilibrium problem in classical statistical
mechanics can be stated in terms of the Liouville
equation. We employ a state notation to describe this
equation. The state vector

~
t) describes the statistical

'~ M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583 (1967).
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L. P. KADANOFF AND J. SKI F I
state of the system at time t. This state is dehned so
that its components

(pi, p2 p~&ri, r2 r~l 3& &pF,»l t&

—=f~(pr ~) (2 1)

are the probabilities for 6nding E particles in the system
with one particle havingco ordinate r~ and momentum

p~, another with coordinate r2 and momentum p2,
etc. The time development of the system is described
by the Liouville equation

S. Oyerators and States

For our purposes, the important operators in the
theory are the densities and currents of conserved
quantities. We mite" the number density operator
as ri~(r), the momentum density as fi,„(r), and the
energy density as e,~(r). For example, the matrix ele-
ment of the momentum density is

&P',r', »'I ff.(r) I P;;»&= 2 p. ~(r r-) &P—',r',»'I Pr»).

(8
+r)—[r& o=

kN
(2 2)

with L having the matrix element

NC 8 NC 8
&p', r',»'

I
L

I P,r,»)= P
I -~pa ~ra ~ra ~pe-

X (p', r',»'
I p,r,») (2.3a)

&p,",» I p, ;»)=~~,~ II ~(p.-p. )~(r.-r. ). (2.»)
a=1

There are two basic states which will prove to be
particularly useful. in our analysis. The erst of these is
the equilibrium state I) defined by

&p, ,»l&= ~(-~L~&p, )-»jVL~-».~V,.»,
(2 4)

which gives the grand canonical ensemble equilibrium
distribution with chemical potential p and inverse
temperature P. The second is the "summational state" wg'() (2.9c)

The current corresponding to these densities are j(r)
(number current), j'(r) (energy current), and r@(r)
(stress tensor). (In cases in which it does not appear
to cause confusion, we shall drop the subscripts "op"
on operators. ) These currents are defined by

—v j.,(r) = LL,~.,(r)3,
—&.j;,(r) = LL,~;(r)j,
—~

r(r)=LLEW(r)j.

Before we begin our analysis, it is useful to recall
several important properties of these currents. The
first is that the diagonal element of the stress tensor
r„(r) is, for a system at rest, the pressure operator
p(r). The second is that products of the currents have
very simple momentum averages. If ( &~ represents a
moInentum average in the grand canonical ensemble,

&&a'(r) J~(r')&~=~(r —r')~" (r)~'~, (2.9a)

&&g'(r)i" (r')&%= b(r —r')L".(r)+P"(r)j~*', (2 9b)

(&I=~ I
rrdp-~. l&p, ,»l (2.5)

Because Eqs. (2.9) are so important to us, we define a
linear combination of conserved quantities with a
current which has a particularly simple correlation
with g(r); namely,

Notice that I) is not the conjugate vector to (I. How-
ever, they do have a conjugate signi6cance relative to
I since

1 — (a+p)
s.,(r) =—e„(r)— N.,(r)

(&)
(2.1O)

expresses the proper normalization of the state
The average of the physical quantity X in the state
I t& is given by

&x& =&IX..l~&, (2.'/a)

while the average of X in the grand canonical ensemble
0

&»=&lx.,l). (2.7b)

In Eq. (2.7), X,~ is a diagonal matrix in the p's and
r's. (In fact, the only o&-diagonal matrix in our pre-
sentation is L)

Ll)=0 and (IL=O.

The importance of (I lies in its usefulness for deter-
mining averages. For example,

as the symbol indicates, s,~(r) plays a role of an entropy
density. In particular, the entropy current

& )+&P&.
j"'(r)=—j"'(r)— j.,(r) (2 11)

T (n&
obeys

P&f'(r) j '(r')) =—~(r—r') r. (r)+P. (r)

&~)+&I)
n.p(r) 8;i, . (2.12)

(n)

The full thermodynamic average of the right-hand side
of Eq. (2.12) vaillslles.

's In this and several other regards we follower the notation of
I,. P. KadanoB and P. C, Martin, Ann. Phys. (N. Y.) 24, 419
(j.Ã3).
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In the discussion of hydrodynamic phenomena, the
most important states are local equilibrium states which
describe situations in which the equilibrium parameters
(temperature, chemical potential, and velocity) are
varying slowly from point to point. To form these
states, we begin with linear combinations of the den-
sities of conserved operators: a, (r) with i=1, 2 5.
These densities are used in the form of their Fourier
transforms

a;(q)= d'r e '4'a (r).

I s,q&= a*(q) I &,

&4,ql =(la'( —q),

are properly orthonormal

(2.13)

The linear combinations are set up so that the "local
equilibrium states"

reduce to the speci6c heat at constant volume and the
adiabatic sound velocity at q=0.

In our further analysis, it will be important to make
a contrast between ai(q) and a2(q). Notice that a, (q)
as defined by Eq. (2.15a) has a normalization factor
1/QC4, while ag(q) has normalization factors c(q) and
(1/Cv —I/O„)'i2. Near the critical point, C„diverges
very strongly. For example, on the critical isochore it
diverges as (T T,) —&, with y=3. On the other hand,
1/c' and Cv diverge much more weakly near the critical
point, with a roughly logarithmic dependence upon
T T,. T—herefore, we must conclude that ai(q), which
is proportional to the entropy density that appears in

ai(q), has much stronger fluctuations near the critical
point than the combination of operators in a2(q).

The point is further borne out by the thermodynamic
role of the two operators within a correlation function.
If we have some operator X,~ (q) which does not depend
explicitly upon the thermodynamic parameters, then

&4,ql i,q') =~', (2~)'~(q —q') .
To be specific: We choose the states by writing

(2.14)

lim (I s(—q)X.,(q) I)=p-' (X)
BT

s"(q)
ai(q) =

L&AC.(q))'"
(2.15a)

a4(q)=g. (q)(p/~)'"

a4(q) =g. (q) (pi~)'"

a4(q) =g*(q) (p/u)'"

(2.15c)

(2.15d)

(2.15e)

The q-dependent "thermodynamic quantities" in Eqs.
(2.15a) and (2.15b) reduce to the standard thermo-
dynamic values at q=0. These are dered to have the
correct value so that ai(q) and a2(q) are orthogonal
and properly normalized for all q.

In particular,

C.(q)= (I".(-q)".(q)l)/&en (2 «a)
reduces to the speci6c heat at constant pressure at
q=0, while the quantities Cv(q) and c(q) defined by

and

T(n& (I".(—q)s..(q) I)C.(q)Lc(q) j'= — (2.«b)
~~ &In..(—q)n. ,(q)l&

LC.(q)j'
hap —C~ q

p Cr(q)
c(q) =

& ln..(—q)s..(q) I &

(2.16c)

The state orthogonal to
I 1,q) and properly normalized

is
I 2,q) = a2 (q) I ) with

( p)'"
a2(q) = c(q)n" (q)

(n)

~ ~

1 1

I ".(q) (2»b)
p-Cv(q) C, (q) -&

Finally

Since the condition of fixed P does not preclude any of
the wild variations which occur near the critical point,
these derivatives can be very large indeed. On the other
hand,

(n) 8(X)
lim &lan( —q)X(q) I) c(q) =
q~ v'(up) st+

The condition of fixed S/N precisely holds constant the
strongest variations which occur near the critical point.
Therefore, the thermodynamic derivative at axed
S/X tends to be, at worst, weakly divergent.

The idea that there is a characteristic size to the
operators a2 and a& can be carried even further, to say
that the addition of an extra factor of s,~(q=0) to an
expectation value, which is already undergoing critical
fluctuations, multiplies this correlation function by a
characteristic factor. To compute this characteristic
factor notice that on the coexistence curve

while the difference between (n) and its critical value
is given by

I &n) —&n& I
-(-4)'.

Consequently, in this case the extra factor of s,~ has
had the effect of multiplying the thermodyn. arnic
quantity by a factor e (l'+», which diverges roughly
as (T—T.) 'I'. In general, we expect that, for small q,

s (q)~ 4 (P+r)—(2.17a)

A similar analysis may be applied to as(q). Except for
the prefactor of c(q) 1/LCv(q)]'i', a2 acts as a tem-
perature derivative inside a correlation function. For

lim &s,~(—q)n, ~(q)) (—e) ~; e= (T T,)/T„—
q~o
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this reason, at small g, a~ is of the order of

82(q) ~CG (2.17b)

when it appears as a factor in an already fluctuating
correlation function. On the basis of this logic, one
would, for example, estimate that

8
&I o2(q)~(q')~( —q —q')

I
&-~ & l~(q')~( —q')

I
&-~-

AT BT

on the critical isochore if q and q' are very small.
This hypothesis that there is a natural size to

quantities near the critical point can be extended to
give an estimate of the q dependence of different cor-
relation functions. According to the scaling hypothesis,
all lengths near the critical point should be referred to
a characteristic range of correlations, $. On the critical
isochore $ e ", with v=-,'. Then, near the critical
point, correlation functions like &ls„(q)s,v( —q) I) and

&le,v(q)e, v( —q) I) should depend upon q only in the
combination gP.

There is one more scaling-law result which we shal]
need in our arguments —a result which is much more
questionable than the ones we have stated so far. The
results stated above seem to give at least roughly cor-
rect estimates of divergences in the critical region;
the hypothesis we are about to state has never been
checked except in the two-dimensional Ising model.
This extra idea is that there are essentially only two
diferent Quctuating quantities near the critical point,
e.g., ai(r) and a2 (r), and that all other critically Quctuat-
ing quantities can be considered to be linear combina-
tions of these two. As a consequence of this assumption,
in its leading or most singular behavior e,v(q) is
proportional to s,v(q). Hence, the ratio of correlation
functions &le, (q)N„(—q) I)/(ls, (q)s, (—q) I) should
be essentially a ratio of identical quantities so that it
is very weakly dependent on either e or q$ in the critical
region. The product C v (q) I c(q)g' defined by Eq. (2.16b)
will then be almost a constant independent of g$ or e

in the critical region. This result will have important
implications for sound-wave damping. However, we
should point out once more that this conclusion is much
less reliable than the other conclusions we have drawn
from the scaling hypothesis, because this result requires
the very strongest and. most dubious form of that
hypothesis.

C. Transport Processes

The transport modes of the system appear as slowly
relaxing solutions to the Liouville equation. An eigen-
state of L with eigenvalue s will relax in time as e ".
Consequently, the slowly relaxing modes have a small
real part to the eigenvalue s. Since L is translationally
invariant, its eigenvalues may be classified according

to the value of the wave number q. The transport modes
appear as states whose relaxation time goes to infinity
as g

—+0.
To 6nd the eigenvalues of L we start with the equa-

tion for the sth right eigenstate of L corresponding to
the eigenvalue s„:

~ lv, q&~=Llv, q&~. (2.18)

P=1—Zl j,q&&j,ql. (2.20)

According to Eq. (2.18),

s„PI v, q) g=PLI v, q)ii
=PLPlv, q&~+2 PLI j,q&&j,qlv, q)~,

so that
1

Plv, q&
= Z PLlj, q&&j,qlv, q&a

s„—I'LI'

Thus, Eq. (2.19) can be written as

P, Ls„8;,—L,;(q)—U,;(q,s„)j&jq I v, q)ii =0, (2.21)

with
L', (q)=&~,«ILI j,q&, (2.22)

Lr*"(q») = (»«I LP PL
Ij q).

s—I'LI'
(2.23)

The eigenvalues of L are, of course, determined by the
condition that the matrix s8,j'Lzj U'j have zero
determinant.

The standard transport theory emerges from Eqs.
(2.21), (2.22), and (2.23), if we identify L,; with the
set of thermodynamic derivatives which appear in the
nondissipative part of the theory and U;; with the
matrix of transport coefficients appearing in the dis-

sipative part of the theory. Once these identifications
are made, we can see that Eq. (2.19) represents the
usual linearized hydrodynamic equations.

To evaluate L;j notice that

L' =&~,«ILI~,«)
=&I~'(—«)«(q) I&

=(ILo'(—q), Ljo, (q) I &

=~q &I i'(-q)~;(q)l), (2.24)

19 In Eq. (2.19) and below, we have taken the volume of the
system to be unity.

If this is a transport eigenstate
I v, q)a is mostly com-

posed of the states li, q&. (Notice that v=1, 2
labels eigenvalues of L while i=1, 2 . 5 labels the
local equilibrium states. ) Then we apply (i,ql to Eq.
(2.18) and find"

'(~ ql v, q&~=(~ «ILI v q&~=K~ (',«ILI j q&

&& &j,ql v, q)ii+g, «ILPI »q&~ (219)

where I' is the projection operator which rejects the
states Ii,q&
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Tmx,E I. The matrix (sb;; —I.;;—U@).

Heat Qow Sound waves Viscous Bow

Heat Qow

Sound waves

Viscous Qow

where j; is the current corresponding to the ith con-
served quantity. If I.;; is to be nonzero, u; must be a
vector with a component parallel to q, and a; must be
a scalar or vice versa. If q points in the x direction, the
only possible nonvanishing elements of I-;; couple the
scalars (i=1,2) with g,(j=3) and vice versa. Further-
more, we picked the form of a~(q) s,~(q) with the
ldca lrl mind of making

&I Ii(—q)g (q)l&-&li'(-q)r*(q)l&= o.

LSee Eq. (2.12).j Therefore, L» and La, vanish.
The only remaining terms in I;; are I.a~ and f23.

These terms are

L»(q) =L»(q)

=fq &II~(-a)aa(q) I&

=fr.~(q) &I j.(—q)g. (q) I & (2 25)
&e)

In fact, all the transport coeKclents ansc from U;;.
To see this, we rewrite Eq. (2.23) as

U'~(q ~) = —
&lq i'(—q) ~q I~(q) I) (2 2g)

s—I'I.I'

This result has essentially the same structure as the
Kubo~ formulas for transport coefBcients. It is a correla-
tion function involving a product of currents. In place
of the usual time integral, Eq. (2.28) contains a de-
nominator with diGerenccs of relaxation times.

There are 25 terms in U;g, but there are only three
independent transport coefficients X, g, f

Our next task must be the elimination of redundant
terms. Notice that the current for particle Qow j is
proportional to the momentum density. The projection
operators eliminate this current. Hence, of the terms
Uyy& Ugy, Uyg~ and U22, thclc ls only onc independent
combination: that arising from the energy current
j'. Ke have

U»(q, ~) =v'I (q,~)i~c.(q)
Lmg Lgm i q,c(q) . —— ——(2.26)

If the U;; in Eq. (2.23) were set equal to zero, then U»(qP) =0'~(qP)
this hydrodynamic equation would contain two nonzero -pcs(q) nc, (q)

"relaxation times"
q9 (q, s)

Uym(q, s) = Umg(q, s) =(2.27)Sy= &ZCgg )

In writing the last line of Eq. (2.25), we have made use ~I, (q z)
of expressions (2.15b) and (2.15c) for a2 and as, and

' I'LI' @-
also of the fact that the entropy current j'(—q) can
generate no contribution to the average (2.25). Equa- with the U s being given by
tion (2.9a) now enables us to evaluate L23 and L» and
find

and the other three eigenvalues would be zero. These
pure imaginary "relaxation times" reQect the oscil-
latory behavior of undamped sound waves. The vanish-
ing of the remaining relaxation times indicates that a11

the diffusive processes must arise from the neglected
term U,;.

) -1/2

&&
I

—
I

. (2.32)
c,(q) ic, (q) c,(q)&

~ See the article by R. Kubo in J ecfgresiw Theoretical Physics
(Interscience Publishers, Inc., New York, 1959), Vol. I, Chap. 4.
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with
s= +iq.c(«)+-,'(g')D, (q,s), (2.33)

3v(«,~)+f'(«,~)
D.(q,s) =

The terms in U involving both vector currents and
tensor currents like U23 are higher order in g and are
probably negligible in describing the transport.

In summary, we list the signi6cant terms in the
matrix (8;;s I;;——U,;) in Table I. This matrix is
almost diagonal. The last two rows and columns de-
scribe the diGusion of the transverse component of the
momentum. The coupling term between the Grst row
and column and the second is small and may be
neglected. Then, the 6rst row describes the heat-Sow
process, and the second and third rows describe the
sound. wave. When the sound-wave damping is small
compared to its rate of oscillation, the sound waves
obey a dispersion relation

which play the role of frequency denominators in the
Kubo formula. To gain a convenient representation for
X, we employ a representation of I. in terms of its
right eigenstates Iv, q)&, its left eigenstates r(v, ql,
and its eigenvalues s„(q) by writing

L=Z -I",q') "(q') &",q'I.
(2m)'

(3 2)

Here the eigenstates are normalized so that

~&~,« I
~',«'&~= b. ,"~(«—«') (2~)'. (3.3)

Because the projection operator E in X discriminates
against local equilibrium states with wave vector q, this
projection operator almost entirely removes the lowest
eigenstates of l. (the transport states) and leaves the
remaining states almost untouched. For this reason,
we write the part of X with wave vector g as

X(q,s) ( 1 1
(2.34)

p ECv(q) C, (q)

- I",q&»&",ql

v -6 s„.(q) —s
(3.4)

The eigenstatcs for these modes are

o2(«)+~~(«)
I ~,«&=~+(«) I

&= I& ~

K2
(2.35)

s= X(q,s)q'/pC„(q),

and we call this solution sr(q). Finally the viscous-flow
mode has

Ke call the solution to Eq. (2.34)sg(q). Similarly, the
heat-Qow mode has a relaxation time which is a solution
of

(2.36)

We are interested in divergences in the transport coef-
6cient g(q, s) near the critical point. These divergences
can be expected to arise from states v' which give small
values of s. (q), that is slowly decaying intermediate
states. There is one set of intermediate states which is
particularly attractive for this consideration: those
states involving multiple transport processes with long
wavelengths. For example, we can consider a state
which involves two independent transport processes
with wave vectors q' and q—q'. These states would be
of the structure

with a solution we call s„(q).

X=1/(PI.P-s), (3.1)

IG. PERTURBATION THEORY FOR THE
TRANSPORT COEFFICIENTS

A. Intermediate States

In the expressions (2.23), (2.28), and (2.29) for the
transport coefIlcients, there appear structures of the
form

&«. («')~"(«—q') l&&l~;(—«)~"(«'—«), (3 5)

&"(«)=&. («)+~. (q —q) (3.6)

since two noninteracting disturbances have an inverse
relaxation time which is the sum of the inverse relaxa-

tion times for the individual disturbances.
With this logic, X~ gains a representation:

where the u„'s are the linear combinations of the u, 's
%'hlch gcnclatc spccl6c tlanspolt ploccsscs. Thc clgcn-
values for the states (3.5) are

dY a.(«')~" (q—«') l&&l~.(—«')~" (q' —«) 1 dY dY'

(»)' ~.(«')+~" (q—q') —~
+—Z

3!""- (2~) (2~)3

a" («')~" («")~.(»—q' —q")
I && I~, (—«')~" (—«")~.(«'+«"—q)

~.(»—q' —«")+~"(«')+»" (q")—~
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B. Viscous Flovr —+ Heat Modes

To show the utility of the representation (3.7), we
consider the formula for the viscosity

—A(«, ~) = &I gw(
—«)L»&1gw(«) l)P (3 8)

In Kq. (3.8), the projection operators I' may both be
replaced by unity since I' —1 makes no contribution to
the matrix element. Consider the contributions to the
right-hand side of (3.8) from intermediate states which
involve two heat-Row modes. These give a contribution
to g(q, s) which is

d'q' (I c.(—«)«i(«')~i(« —«')
I &

A—»(«,~) 2p=

(2m)' »(q')+sr(q —q') —s

The entropy operator s has been defined so that its
correlations with the pressure vanishes, and so that its
autocorrelations are related to pC„(q). Consequently 2'

Mqq~= Lz«g Cy(« —q )
+i(q„'—q„)C„(q')]phd'2'. (3.15)

Since q„=0, Kq. (3.9) reduces to

LC.(—«+q') —C.(q')]'
q'n»(«p) =— (q.')'

2P (2~)' Cn( —«'+«)Cp(q')

X . (3.16)
~ (q')+»(q —«') —~

Since
&& & I

~i(«'-«) ~i(-«') Lg.(«) I
&.

In the static, long-wavelength limit q
—+0, s —+0,

Eq. (3.16) gives

&I ~i(-«')~i(q'-«)Lg, («) I)
= —(lg. (—«)«(«')~ (q —«') I)*,

this result may be rewritten as

p d'q'
A»(«, ~) =

2ks2 (2g)'

X , (3.9)
LpC (q') pC„(q—q')]L»(q')+»(q —q') —s]

'

with

~e, ~
= &lgw(

—«)~~"(«')~"(q —q') I) (3 10)

To evaluate this matrix element, we successively
commute L to the right and use I

I )=0 to write

c,(q')
1 cPg Bgg

err(0, 0)=- (q„')' . (3.17)
(2~)' »(q')I.Cy(«')]'

Because the thermal relaxation rate»(q') becomes very
small for long wavelengths, this integral may contain
large contributions from small values of q'. According
to the scaling-law hypothesis, there is an inverse length,
P', which measures the characteristic wave vector for
all phenomena near the critical point. From this hypoth-
esis, one would conclude that main contributions to
the q' integral come from q'& $ '. Furthermore, in this
region

;".(q')-, C.(q')
(q')'

(3.18)»(q')
I
"=i-i-»*=(~*/~c.)r'

&~+p) .
j'(r) = j '(r)- -j (~)

(n)
1 pc~

err(q, s)
p x*

(3.19)This current has short-range correlations with the
momentum density such that, when one averages over
the momenta of all the particles, in the system, one
flIlds

for q& &' and s&»*.
Notice the restrictions on Eq. (3.19). For q»t ' or

s»»*, the frequency denominator in Kq. (3.16) is
necessarily considerably increased. Therefore, if the
restrictions in Eq. (3.19) are not satisfied, this con-
tribution to p(«, s) must necessarily be considerably
reduced.

"Kawasaki evaluated matrix elements like (3.10) by a slightly
different technique. He moved I. to the left in (3.10) and obtained
a matrix element with a factor of q r,~(—q), where v~& is the
momentum current. He then argued that, at small q, v-,„(q)
reduced to P 'q„'(8/Bq, '). One can see that our result supports this
conclusion.

=8(r—r')I s,~(r)+p,~(r)/2'], (3.13)

where p, ~ is the pressure operator. Thence, Eq. (3.11)
reduces to

3f », '= (—~«.')P-'&
I L~"(q' —«)+ (1/T)P" (q' —«)]

x~..(q-q')
I &+~(«.'-«.)p '

&&IP"(—«')+(I/2')p"( —«')]".(q')
I & (3 «)

3f ., ' = &Ig.(—q)( —~«') j"'(«')~"(q—q')I)
+(I gw( q)L~(«q')]' 3o~'(««')~o~(q') I) (3 11) where»* stands for the inverse thermal relaxation time

at q'~Q' and X* stands for the thermal conductivity
In this expression j' is the heat-Bow current which is at this wave vector and characteristic frequency. VVith

these estimates in hand, we can estimate the right-hand
T. (3.12) side of Eq. (3.17) as
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where 3=(T T,)/T—.. Therefore, the product of the
transport coeflj.cients is

2lTT(0)Q)l),* 3 &+" (3.20)

Since y is greater than p, this result tends to indicate
that one or both of the transport coeScients should
diverge.

The same type of analysis may be employed to discuss
the decay of a viscous mode into three or more heat
modes. This analysis yields

P Ct3q' d'q"
q lTTT(» s)

6ks T (22r)' (22r)3

I~2, 2', 2" I'
X

P'C~(»')C~(»")C. (q'+q"—q)

Equation (3.19) is our first sight of a necessary
divergence in a transport coefficient. If p= p, and T& T„
according to the conventional notation C~ and
diverge as

C„e &,

I
2

d'q'
3.23

(22r)' sT (q')+ sT (q—q') —s

I,'=&Ig (—»)I-~~ (»')o (»—q') I)
= —

& I g.(—«)«2(») I && I ~2(-»)~i(»')ar(»-»')
I &

For small q and q' the matrix element is readily esti-
mated as

(k )1/2

L q, gs~ —1' T
(3&r)'" &&)Hi

so that the whole contribution to the viscosity is
obtained by replacing the integrals in Eq. (3.23) in
the same way as above. In this way we obtain

C. Two Heat-Mode Contributions to f+ 332S-

The same kind of calculation works for f+ 3'2h—with
the only difference being that the predominant con-
tributions come from the terms involving the local
equij. ibrium part of the projection operator P. In
particular, the two heat-mode contribution to f+ 34)s i—s

q'Ll TT(»,s)+3)HATT(», s)g

pCnF'ksc' T(~I~T)C2 I wA
(3.24)

Cv C~A typical term in M is

X (3 21) iTT(»)$)+37/TT(Q)$)4

ST(q )+ST(» )+ST(q q q ) $

~222-=P , q,*q2
1

Bgy

X ($,~(q')$,„(q")$.,(—q"—q')). (3.22)

We now employ the scaling idea to argue that the
contribution (3.21) to )l is of the same order of magni-
tude as the two heat-mode contribution, (3.9), which
we have already evaluated. Consider how (3.21) differs
from (3.9). There is an extra factor of C„' in. the
denominator of (3.21) and an extra wave-number
integral. If the wave-number integral contributes over
q"&g', this integral gives us an extra factor of +3.
Finally, the matrix element (3.22) contains one more
factor of s,~(q") than (3.9). According to the scaling
idea this extra factor enhances the matrix element by
a factor of

I
3

I
T s on the critical isochore. Of course,

the frequency denominator is of the same order of
magnitude, s~*, in both cases.

Hence the extra factors which appear in (3.21) and
over and above the factors in Eq. (3.9) are ($ 3jCT)
(3 & s)2 or 33~2' 2$. But according to the scaling idea,
33 =y+2P. (See Refs. 8 and 14.) Therefore, the con-
tribution (3.21) is of the same order of magnitude as the
contribution (3.9). An extension of the above argument
indicates that all contributions from intermediate states
with any number of heat modes in them are of the same
order of magnitude.

for q&$ ' and s&sT*. Or, if we use the scaling-law
equality 3s = 2—o. in the dimensional form

1 BC„
$
—3

-Cy ~T s/N-
p2kspCv

on the critical isochore we have 6nally that

p2C2C $2

HATT(»;)+

3~TT(»,$)-

for q& g' and s&sT* on the critical isochore.

D. Heat ~ Heat+Viscous Flow

We use Eq. (2.29) to 6nd l).(q,s). The situation in
which the intermediate state contains one heat-Qow
mode and one viscous-Row mode gives a contribution
to X(»,s) which is

P d3qf

q2X„T(q,s) =
ks2 (22r)3

X . (3 25)
p'C. (q') Lsr(»')+" (»—«') —sj

~K. Kawasaki and M. Tanaka LProc. Phys. Soc. (London)
90, 79T (1967)7 have calculated the contribution to f+fg from
the local equilibrium part of the projection operator for a two-
component liquid mixture.
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TmLE II. Contributions to transport coefBcients.

Contributions to g:
From vIscous Sow

plus heat modes

From sound waves
plus heat modes

Region I l
1

J
t

X*)~
g~g+ p~

pC„

r

pCA '
~g-2/3

Pn
I

$
—2C

cP
I

Region II

&Increasing s—

Region III I
I
j

l

Contributions to q
..

From heat modes

From sound waves
plus heat modes

Contributions to f:
From heat modes

From sound waves
plus heat modes

p'c'C„

X*

y~pgg~g —~+~/2~g —2/3

From high g processes

PC~V'
g,r(«,s), for q&P', s&s„~. (3.2'I)&,., =(Ir.,(—«)L~& I(»—«')~.,(«') I &.

In the thermal conductivity matrix elements, the contri-
bution of (P—I) is once again negligible. Consequently,

If the direction of the momentum in the intermediate the denominator. As a result
state is described by the unit vector 8, then

&,., =~» (I i.,'(—«)@ c(«—«')~.,(«') I &

=i«@0 '(IL~"(—«')+P"(—«')/2"3&" (»') I &

= i«@9-'kspC, («') .
After averaging over directions of q' and summing over
polarization vectors, 4, perpendicular to q —q', we find

d'q' C,(»')
A~r (q,s) = sP-' — . (3.26)

(2 )'~ («')+& (»—«') —&

The factor C~(«') in the numerator of Eq. (3.26) allows
this contribution to X to be large. The integral contrib-
utes for q'& P'. Since the thermal diffusion rate is very
slow near the critical point, the viscous relaxation
rate s„(«') dominates the thermal relaxation rate in

s, (q') I' r'-~.*=(~*/~)&' (3.28)

The limitations on Eq. (3.27) indicate that for large
s and. large q the denominator in Eq. (3.26) becomes
large enough to reduce the size of the contribution to
the thermal conductivity quite appreciably.

From scaling-law arguments we conclude that con-
tributions with two or more heat-Sow modes in the
intermediate state together with a viscous-Bow mode
give a contribution to P, of the same order as (3.2'I).

If there are no further contributions to g and X,
we would now have enough information to compute
both q and P. To do this calculation, it is necessary to
recognize that the large factor C~ in the denominator
of s~ guarantees that, as indicated in Table II, s~~ggs, ~.
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Therefore, p* is the viscosity evaluated at "frequencies"
much higher than sr*. The contributions (3.19) to g
cut oG at the characteristic thermal relaxation rate sq.
Hence, g* gains nothing from the processes involving
heat-Qow modes in intermediate states.

If these be the only processes contributing to the
analomous viscosity, there cannot be any critical
Quctuation term in q*.Then q* will be finite at the critical
point and Eq. (3.27) will predict

X(0,0) e-&+" (3.29)

which diverges as roughly the —
32power of T—T, on

the critical isochore. Furthermore, the contribution
(3.29) will persist for all s&s„*.Hence, it will be quite
relevant up to and beyond the thermal cut oG s&*.
This means that we can use (3.29) to evaluate X* in
Eq. (3.19). We then find

err(q, s) e', for q& t ' and s&sr*. (3.30)

Since p* is, by our hypothesis of leaving out other con-
tributions, quite finite, Eq. (3.30) predicts «zz(0, 0) does

not diverge as a power of T—T,. This result does not
preclude a logarithmic behavior" or a very strong cusp
in the low-frequency viscosity. In fact, this analysis
suggests that one of these two types of singularities
might well hold for g.

Our conclusions about the low-frequency behavior of
X and q will depend quite crucially upon the high-fre-

quency form of p. High-frequency processes which can
contribute to g include those in which sound waves are
produced, The characteristic frequency for sound waves
is c$ ', which is much higher than s„*or sr*. Therefore,
as indicated sound-wave processes are good candidates
for producing contributions to X, g, and l', which will

not cut off until high frequencies.

E. Sound-Wave Intermediate States for 2

Intermediate states with two sound waves do not
produce an appreciable contribution to X(q,s). However,
three-sound-wave intermediate states do produce a
contribution, which can be computed from

with

q'z„„„(q,s) =
3!kii (2s)' (27r)'. , ","=~i

I(I« i"'(—q)a" (q')a" (q")a.(q—q' —«")
I &

I'

s. (q')+s, («")+s,(q—q' —q")—s
(3.31)

q c(«)/p '"
a" (q) =—a2(q)+ '

K2 fq[ Ep

~"(q)=~'~~(«) I«I+AD. («,' («))g'

(3.32)

(3.33)

The significant terms in the product of three a's are the ones which involve a product of two a2's with one mo-
mentum. After the momentum average is performed, we find that the matrix element in Eq. (3.31) is

1 Q'Q
a'L~ ~(—q+q')+p ~(—q+q')/T]a2(q")a2(q —q' —q")

V'(pp) (~&)'
I
q'I

q q"
+ ~"L~"(—«+«")+P"(—«+q")/na2(«')a2(» —«' —q")

q (q—q' —q")
+ ~L~. (—q' —«")+p. (—q' —«")/Tja~(«')a2(«") I).

I q—q' —«"
I

If q, q', and q" are each &$ ', this matrix element may
be estimated to be of the order of

1 1(B
q ~

C,
Q(pp') Cp (BT

since s,~(—q) generates P '(B/BT) as q
—+ 0 and

(~ a, (—q)a2(q) ~) is of order unity.
The damping terms, i.e., the real part, of the fre-

quency denominator of Eq. (3.31) are smaller or of the
same order as the imaginary part of this denominator.
Therefore, to get an order of magnitude estimate we
can replace the denominator by the 8 function

h(0c(q')q'+0"c (q")q"
+ p(q q q")lq q '«

l
™)

which generates a contribution

1
for )s) &ep'.

C

Since each q intergral covers q&t ', the resulting esti-
mate of A, is

1 (BCi ' 1
~„„„(q,s)-—

~

'
. (3.34)

c Cv' ( BT ~ pP'kii

The scaling-law arguments inform us that the two
(B/BT)„each produce a factor e ™Mmultiplying the

g The scaling-lair analysis is based upon exponents and it
cannot distinguish a finite but discontinuous result from a
logarithmic in6nity,
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singular part of Cv while P'~e'"= e'~+& If we put this
argument in dimensional. form, we 6nd that

P 't '(8/BT)„' k//C„p

so that a momentum average gives

(pP)'"
4(g.(—q) [L,~2(q')7).= c(q') (—iq.')~"(q' —«)

(n)

so that Eq. (3.34) can be written

(—2 C ]
Ann(qp)- -([Cv7si-g)',

c Cr'P

for q&P',
I
s

I
&cP'. (3.35)

Here the subscript "sing" reminds us to take the
singular part of Cy in our estimates and leave out any
constant term which might appear. If C~ diverges as
e Eq. (3.35) gives an estimate of a singular contribu-
tion to X, which is

(0 0)~ ~
—y+2 ~—a/2 (3.36)

on the critical isochore. Since 7—2p=O, Eq. (3.36)
describes a weakly divergent or strongly cusped con-
tribution to the high-frequency sound-wave damping
constant.

If the intermediate state includes in addition to sound
waves viscous Qow and heat modes, the scaling-law
arguments imply that the estimate (335) still gives the
correct order of magnitude for the singular parts of
X(q,s) at high frequencies.

A»(qs) P dqcfqX,(3.37)-"-+i s, '(q')+s, "(q")+s.(q—«' —q")—s

where a typical term ln M ls

F. Sound-Wave Intermediate States fox g

The contribution to q from a three-sound-wave
intermediate state is given by

(-~q. ')
k p C (q') C„(q')

P..(q'-q)
X s..(q' —q)+ — (3 39)

T

At this point, a serious question arises. %hat is the
behavior of the collection of operators in Eq. (3.39)
for q P', q' Q'? At q=O, the answer is clear. Since

p,~ has only weak fluctuations and may be neglected,
expression (3.39) is iq„—'a2(q') at q=0. But for q/0
each of the two terms on the right-hand. side of (3.39)
is of order c(q')ui(q' —q), which is much more singular
than az(q' —q). The question then boils down to: Do
the most singular parts of the two terms in Eq. (3.39)
cancel against one another'

There is an alternative way of stating this problem.
If the product [Cr(q')7"/2c(q') is independent of q',

then (3.39) is proportional to a~(q' —q). If, however,

[Cv(q')7'"c(q')-5,
Bg

(3.40)

From this point on we can use the same analysis as for

X»„, and we find

then expression (3.39) is of the order of q'car(q'). This
idea was discussed at the end of Sec. IIC. We stated
there the point that the product [Cz(q')7'/mc(q') would

be essentially independent of q'g if the strongest way
of stating the scaling-law idea were right. However,
we believe this to be probably an overextension of the
scaling-law idea. In any case, we here use the estimate
(3.40) and concomitant estimate of the matrix element
defined in Eq. (3.38) as

) i/2

P k//pCvt'

X (Is.,(q'-q)a~(q")a~(q —q'-q")I).

~~, a', e"=(IK ( q)[L /i (q')7
~a2(q")o~(q-q'-q")

I }. (3.3g)
q„„,(q,s) X„,(q,s)/Cv. (3.41)

Equation (2.15b) implies that

(pP)'"
[J-,~~(q')7= c(q')( —~'q') j"(q')

(n}

G. Sound-Wave Intermediate States for (+s~g

Tvm-sound-wave processes contribute a term to the
longitudinal viscosity

q'[h. (q,s)+ 3n»(q;) 7

ksp-Cv(q') C, (q')-.
(-~q') i"'(q'),

(2~)' sa. (q')+so'(q —q') —s
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with

&a.~ =(Ig (—«)L~~2(«')~ (»—«') I)
=—(Ig.(—«)L (») I)
x(l a2( —«)~2(«') ~, (»—«') I).

For small q and q', H reduces to

(kg)'" 8
IIe.s' 8 2 cI&/»

(pCv)'/2 BT

(3.42)

(3.43)

The exponent here probably lies within one- or
two-tenths of zero. In addition to this strong cusp or
weak infinity, there is also a constant term in P coming
from high wave numbers. In this region there are
probably also weakly divergent or strongly cusped
terms in. g which we estimate as

p' C~
, (region III and region II) (4.3a)

cp Cv

so that the contribution to f + s4g may be estimated as
g~ ~2v ++a/2 (4.3b)

Bc
(«s)+-'9 («,s) Vk

CvC BT sgN
(3.44) on the critical isochore. On the other hand, f is much

more strongly infinite than g. From Eq. (3.44)

for q& $, Is I
&cP'. Or if we use the scaling-law result

3m= 2—z in the dimensional form

18c'
~p'kgpCy

-C BT S)/'N-

on the critical isochore we find

cjc
ke T

cCv — BT s/N-

~$cp,

so that on the critical isochore

(region III and region II) (4.4a)

4.(«,s)-pc( f ~ &2v
—2+a/2

7 (4.4b)

on the critical isochore.

IV. SUMMARY

In this section we summarize our results. (See Table
II.) Note that the rough temperature dependences
of quantities are also given in Table II taking $ to
diverge roughly as the —23 power of ~, C~ to diverge
roughly as the —-', power of e, and Cv to be roughly
logarithmically divergent.

There are basically three diferent frequency regions:
the low-frequency domain

s&sr*= (X/pC„) P', (region I) (4.1a)

the intermediate region

sr«s&s, *=g*P'jp, (region II) (4.1b)

and the high-frequency region

which is roughly a (——;)-power divergence.
The terms in Eq. (4.3) also seem to be the most im-

portant singular terms in g in region II. If these terms
go to infinity, they dominate the behavior of q so that
Eq. (3.27) gives

X~pCvc$, (4.5a)

and on the critical isochore we have

a(2—v (4.5b)

if Cv diverges as e l". Since n is small and v=0.6, this
result indicates a rather strong divergence in the thermal
conductivity. If, on the other hand, the singularities
in Eq. (4.3) lead to a cusp rather than an infinity in

g, then the constant term in g will dominate near the
critical point. If we call this constant g, we have from
Eq. (3.27)

s„*«s&cP'. (region III) (4.1c) (regions I and II) (4.6a)

(4.6b)X~6 'y+"

t, this
which is again roughly a 3 power-Iaw divergence. If
the scaling laws were so fully correct as to prevent the
high-frequency singularities in p, then Eqs. (4.6) would

(4.2a) be correct rather than Eqs. (4.5).
Whatever form the singularities in X might take, our

approach predicts that X will vary smoothly as one goes
from region II into region I. That is to say that both

(4.2b) the coeflicient in front of the singularity and the critical

V' Cn
(region III)

C

On the critical isochore, this gives

2v—p—a//2

To state our results, we start from the high-frequency
region and work down. In all our statements we assume and on the critical isochore
q( gl

In region III, X(/t) has a singular part given by
Eq. (3.35). If Cv is divergent at the critical poin
singular part of X is given by
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(C~/Cv) $cp, (region I) (4.7a)

so that on the critical isochore

e-~v+(s/2) a
1 (4.7b)

which diverges roughly as &-'.

Finally, we notice one characteristic feature of the
sound-wave damping constant:

Dg
pCv p

According to Eqs. (4.5) and (4.4), in regions II and III

D, =A $c, (4.8)

where A is a constant of order unity. Then in this

exponent will remain constaiit as s passes through sp*.
However, as one passes into region I, new processes
become possible which make for new contributions to
q. If g turns out to be divergent in region II, our ap-
proach predicts that it will have the same critical
exponent in region I, but the coefEcient preceding the
divergent term might well increase markedly as one
passed into region I. If g turns out to be nondivergent
in region II, the integrals which defines it appears to
diverge as e' in region I. This should be read to mean
that p can diverge logarithmically in region I if there is
no divergence in regions II and III. On the other hand,
I' has a very strong divergence in region I. According to
Eq. (3.24)

pC„P'knc' T(BC~/BT)s(~ '

Cv C„

region the sound-wave dispersion relation will read

or
s= Wicq+~sAc(q])q

s= cqP+i+-,'Aq) j. (4 9)

Notice the dependence of this expression upon the
characteristic parameter qf Sev. eral recent authors""
have used the assumption that frequencies of modes near
the critical point depend upon qP to relate apparently
different transport phenomena near the critical point.
In particular, they have estimated the order of mag-
nitude of damping terms by assuming that the complex
frequency of the oscillations were functions of the form

(4.10)

Equation (4.9) is precisely of the form of (4.10).
Hence, our arguments have provided one case in which
this scaling assumption about frequencies can be
derived from microscopic considerations. Notice, how-
ever, that in our case Eq. (4.4) only holds for the
relatively high frequencies of regions II and III.
However, in region I, I is considerably enhanced. in
size. Hence, in this region, the assumptions of Ferrel
et cl.,'4 and Halperin and Hohenberg" do not serve to
predict the sound-wave damping constant.

The divergence of X predicted by this work seems to
agree with the experimental results of Cummins and
Swinney" for CO» while it disagrees, for T& T„with
the experiment of Ford and Benedek" on SF6.

+R. A. Ferrell, N. Menyhi, rd, H. Schmidt, F. Schmabl, and
P. Szepfalusy, Phys. Rev. Letters 18, 891 (1967).+ B. L Halperin and P. C. Hohenberg, Phys. Rev. Letters 19,
700 {1967)."H. Z. Cummins and H. L. Swinney (to be published)."N. C. Ford and G. 3. Benedek, Phys. Rev. Letters 15, 649
{1965).


